Принцип работы процессора компьютера на физическом уровне. Как работает процессор? И началась транзисторная гонка

Принцип работы процессора компьютера на физическом уровне. Как работает процессор? И началась транзисторная гонка
Принцип работы процессора компьютера на физическом уровне. Как работает процессор? И началась транзисторная гонка

Центральный процессор является основным и самым главным элементом системы. Благодаря нему выполняются все задачи связанные с передачей данных, исполнением команд, логическими и арифметическими действиями. Большинство пользователей знают, что такое ЦП, но не разбираются в принципе его работы. В этой статье мы постараемся просто и понятно объяснить, как работает и за что отвечает CPU в компьютере.

Перед тем, как разобрать основные принципы работы CPU, желательно ознакомиться с его компонентами, ведь это не просто прямоугольная пластина, монтируемая в материнскую плату, это сложное устройство, образующееся из многих элементов. Более подробно с устройством ЦП вы можете ознакомиться в нашей статье, а сейчас давайте приступим к разбору главной темы статьи.

Выполняемые операции

Операция представляет собой одно или несколько действий, которые обрабатываются и выполняются компьютерными устройствами, в том числе и процессором. Сами операции делятся на несколько классов:

  1. Ввод и вывод . К компьютеру обязательно подключено несколько внешних устройств, например, клавиатура и мышь. Они напрямую связаны с процессором и для них выделена отдельная операция. Она выполняет передачу данных между CPU и периферийными девайсами, а также вызывает определенные действия с целью записи информации в память или ее вывода на внешнюю аппаратуру.
  2. Системные операции отвечают за остановку работы софта, организовывают обработку данных, ну и, кроме всего, отвечают за стабильную работу системы ПК.
  3. Операции записи и загрузки . Передача данных между процессором и памятью осуществляется с помощью посылочных операций. Быстродействие обеспечивается одновременной запись или загрузкой групп команд или данных.
  4. Арифметически-логические . Такой тип операций вычисляет значения функций, отвечает за обработку чисел, преобразование их в различные системы исчисления.
  5. Переходы . Благодаря переходам скорость работы системы значительно увеличивается, ведь они позволяют передать управление любой команде программы, самостоятельно определяя наиболее подходящие условия перехода.

Все операции должны работать одновременно, поскольку во время активности системы за раз запущено несколько программ. Это выполняется благодаря чередованию обработки данных процессором, что позволяет ставить приоритет операциям и выполнять их параллельно.

Выполнение команд

Обработка команды делится на две составные части – операционную и операндную. Операционная составляющая показывает всей системе то, над чем она должна работать в данный момент, а операндная делает то же самое, только отдельно с процессором. Выполнением команд занимаются ядра, а действия осуществляются последовательно. Сначала происходит выработка, потом дешифрование, само выполнение команды, запрос памяти и сохранение готового результата.

Благодаря применению кэш-памяти выполнение команд происходит быстрее, поскольку не нужно постоянно обращаться к ОЗУ, а данные хранятся на определенных уровнях. Каждый уровень кэш-памяти отличается объемом данных и скоростью выгрузки и записи, что влияет на быстродействие систем.

Взаимодействия с памятью

ПЗУ (Постоянное запоминающее устройство) может хранить в себе только неизменяемую информацию, а вот ОЗУ (Оперативная память) используется для хранения программного кода, промежуточных данных. С этими двумя видами памяти взаимодействует процессор, запрашивая и передавая информацию. Взаимодействие происходит с использованием подключенных внешних устройств, шин адресов, управления и различных контролеров. Схематически все процессы изображены на рисунке ниже.

Если разобраться о важности ОЗУ и ПЗУ, то без первой и вовсе можно было бы обойтись, если бы постоянное запоминающее устройство имело намного больше памяти, что пока реализовать практически невозможно. Без ПЗУ система работать не сможет, она даже не запустится, поскольку сначала происходит тестирование оборудования с помощью команд БИОСа.

Компьютера. Начнем с того, чем отличаются процессоры?

Различные процессоры могут иметь отличающийся набор команд, которые они могут исполнять. Чем больше команд может исполнять процессор, тем быстрее он обрабатывает информацию.Если же система команд более «бедная», то такой процессор должен делать бОльшее число более простых операций, чтобы выполнить обработку данных, по сравнению с процессором с более «богатой» системой команд.

Процессоры, у которых система команд отличается в большую сторону от остальных, называют процессорами с расширенной системой команд.

Важно понимать, что процессор является совершенно «бездушным» механизмом, который совершенно не отдает себе отчета в том, что он делает. Процессор выполняет свою работу шаг за шагом, обрабатывает команду за командой, и он абсолютно «не видит» связи между этими шагами и командами.

Если следующая команда отменяет предыдущую (к примеру, первая команда позволяет записать данные в регистр, а вторая команда удаляет данные из этого же регистра), то процессор будет выполнять такие команды, нисколько «не задумываясь» над бессмысленностью своих действий.

Или, например, если программа будет написана неправильно, и не будет иметь конца, то процессор будет ее обрабатывать непрерывно, и никогда сам не «примет решения» о прекращении работы. Остановить такую “зацикленную” программу можно только путем вмешательства извне.

Еще хуже, если программа будет направлена не на созидание (обработку данных), а на разрушение (например, на удаление важных и нужных данных, или на выгрузку этих данных несанкционированным образом), то процессор безупречно и без всяких «угрызений совести» в точности выполнит все инструкции на уничтожение или кражу важных данных.


Этим пользуются разработчики . Создавая программы, направленные на выполнение несанкционированных действий (удаление или банальное воровство данных, внесение помех в обработку данных и т.п.), разработчики вирусов стремятся к тому, чтобы их программы были записаны в оперативную память компьютера, и чтобы процессору был дан сигнал на обработку записанной в памяти последовательности команд.

В этом состоит их главная задача: обойти все виды контроля перед помещением программы в оперативную память. Остальное доделает процессор, выполнив все команды злоумышленников.

Наиболее просто попасть в оперативную память могут вирусы, записанные .exe, так как в них хранится набор команд практически пригодный без особой предварительной обработки или анализа для выполнения процессором.

Тогда как команды из других типов файлов требуется предварительно обработать специальными программами, соответственно, при обработке можно выявить факт наличия вирусов и вредоносных программ. А.exe файлы можно сразу записать в память и отправить на обработку процессором, не распознав в них вирусов.

Именно поэтому разработчики вирусов так любят формат.exe файлов, а разработчики антивирусных программ, наоборот, не любят эти файлы и проверяют их самым тщательным образом.

Следует всегда помнить, что допуская выполнение.exe файлов, полученных из непроверенных источников, мы открываем доступ к самому сердцу нашего компьютера, к процессору , и позволяем ему делать то, что может навредить компьютеру и нашим данным, которые мы ему доверили. И тогда процессор из нашего помощника превратится в саморазрушителя.

В заключение следует отметить, что процессор выдерживает высокие нагрузки, может постоянно работать на полную мощность и непрерывно, если при этом работает система его охлаждения. Очень важно, чтобы эта система была исправна, иначе процессор может выйти из строя

В принципе, ничего другого с процессором произойти не может, устроен он достаточно надежно, если, конечно, по нему не стучать молотком, проверяя на прочность! Однако если процессор выйдет из строя из-за перегрева, то его отремонтировать невозможно в силу конструктивных особенностей. Неисправный процессор можно только заменить на другой, новый и исправный.

Поэтому в ПК имеются системы безопасности, автоматически отключающие электрическое питание компьютера, если температура процессора поднимается до предельной величины или выше нее. Такое аварийное выключение, как правило, происходит внезапно и без какого-либо предупреждения: щелк и ПК выключился.

Тогда как при других неисправностях могут выдаваться, например, предупреждения на экран монитора или в виде звуковых сигналов. Компьютер не удастся включить до тех пор, пока процессор не остынет до приемлемой температуры.

Если компьютер начал автоматически отключаться из-за перегрева процессора, то лучше всего отправить такой компьютер в ремонт для очистки от пыли, мешающей системе охлаждения поддерживать заданную температуру процессора.

Без исправного процессора – нет ПК. Процессор – это своего рода мозг компьютера, делающий его способным к обработке информации, что и обеспечивает выполнение компьютером всех возложенных на него задач.

P.S. Статья закончилась, но можно еще прочитать:

Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик .
Уже более 3.000 подписчиков

.

Структура центрального процессора

Чтобы непрофессионалу стало понятно, как работает центральный процессор компьютера, рассмотрим из каких блоков он состоит:

Блок управления процессором;

Регистры команд и данных;

Арифметико-логические устройства (выполняют арифметические и логические операции);

Блок операций с действительными числами, то есть с числами с плавающей точкой или проще говоря с дробями (FPU);

Буферная память (кэш) первого уровня (отдельно для команд и данных);

Буферная память (кэш) второго уровня для хранения промежуточных результатов вычислений;

В большинстве современных процессоров имеется и кэш третьего уровня;

Интерфейс системной шины.

Принцип работы процессора

Алгоритм работы центрального процессора компьютера можно представить как последовательность следующих действий.

Блок управления процессором берет из оперативной памяти, в которую загружена программа, определенные значения (данные) и команды которые необходимо выполнить (инструкции). Эти данные загружаются в кэш-память процессора.

Из буферной памяти процессора (кэша) инструкции и полученные данные записываются в регистры. Инструкции помещаются в регистры команд, а значения в регистры данных.

Арифметико-логическое устройство считывает инструкции и данные из соответствующих регистров процессора и выполняет эти команды над полученными числами.

Результаты снова записываются в регистры и если вычисления закончены в буферную память процессора. Регистров у процессора совсем немного, поэтому он вынужден хранить промежуточные результаты в кэш-памяти различного уровня.

Новые данные и команды, необходимые для расчетов, загружаются в кеш верхнего уровня (из третьего во второй, из второго в первый), а неиспользуемые данные наоборот в кэш нижнего уровня.

Если цикл вычислений закончен, результат записывается в оперативную память компьютера для высвобождения места в буферной памяти процессора для новых вычислений. То же самой происходит при переполнении данными кэш-памяти: неиспользуемые данные перемещаются в кеш нижнего уровня или в оперативную память.

Последовательность этих операций образует операционный поток процессора. Во время работы процессор сильно нагревается. Чтобы этого не происходило нужно своевременно делать чистку ноутбука на дому .

Чтобы ускорить работу центрального процессора и увеличить производительность вычислений, постоянно разрабатывают новые архитектурные решения, увеличивающие КПД процессора. Среди них конвейерное выполнение операций, трассировка, то есть попытка предвидеть дальнейшие действия программы, параллельная отработка команд (инструкций), многопоточность а также многоядерность.

Многоядерный процессор имеет несколько вычислительных ядер, то есть несколько арифметико-логических блоков, блоков вычислений с плавающей точкой и регистров, а также кэш первого уровня, объединенных каждый в свое ядро. Ядра имеют общую буферную память второго и третьего уровня. Появление кэш-памяти третьего уровня как раз и было вызвано многоядерностью и соответственно потребностью в большем объеме быстрой буферной памяти для хранения промежуточных результатов вычислений.

Основными показателями, влияющими на скорость обработки данных процессором является число вычислительных ядер, длина конвейера, тактовая частота и объем кэш памяти. Чтобы увеличить производительность компьютера часто требуется сменить именно процессор, а это влечет и замену материнской платы и оперативной памяти. Выполнить апгрейд, настройку и ремонт компьютера на дому в Москве помогут специалисты нашего сервисного центра, если вас пугает процесс самостоятельной сборки и модернизации компьютера.

Центральный процессор - это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Центральный процессор в общем случае содержит в себе:

    арифметико-логическое устройство;

    шины данных и шины адресов;

    регистры;

    счетчики команд;

    кэш - очень быструю память малого объема,

    математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристаллическая пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

Основные характеристики процессора:

    Производительность - основная характеристика, показывающая скорость выполнения компьютером операций обработки информации. Она в свою очередь зависит от следующих характеристик:

    Тактовая частота - определяет число тактов работы процессора в секунду

    Разрядность - определяет размер минимальной порции информации, называемой машинным словом

    Адресное пространство - разрядность адресной шины, то есть максимальный объём оперативной памяти, которая может быть установлена на компьютере

8.2.3. Принцип действия процессора.

Процессор является главным элементом ЭВМ. Он прямо или косвенно управляет всеми устройствами и процессами, происходящими в ЭВМ.

В конструкции современных процессоров четко просматривается тенденция постоянного увеличения тактовой частоты. Это естественно: чем больше операций выполняет процессор, тем выше его производительность. Предельная тактовая частота во многом определяется существующей технологией производства микросхем (наименьшими достижимыми размерами элементов, которые определяют минимальное время передачи сигналов).

Кроме повышения тактовой частоты, увеличение производительности процессоров достигается разработчиками менее очевидными приемами, связанными с изобретением новых архитектур и алгоритмов обработки информации. Некоторые из них рассмотрим на примере процессора Pentium (Р5) и последующих моделей.

Перечислим основные особенности процессора Pentium:

    конвейерная обработка информации;

    суперскалярная архитектура;

    наличие раздельных кэш-памятей для команд и данных;

    наличие блока предсказания адреса перехода;

    динамическое исполнение программы;

    наличие блока вычислений с плавающей точкой;

    поддержка многопроцессорного режима работы;

    наличие средства обнаружения ошибок.

Термин «суперскалярная архитектура» означает, что процессор содержит более одного вычислительного блока. Эти вычислительные блоки чаще называют конвейерами. Заметим, что первая суперскалярная архитектура была реализована в отечественной ЭВМ «Эльбрус-1» (1978 г.).

Наличие в процессоре двух конвейеров позволяет ему одновременно выполнять (завершать) две команды (инструкции).

Каждый конвейер разделяет процесс выполнения команды на несколько этапов (например, пять):

    выборка (считывание) команды из ОЗУ или кэш-памяти;

    декодирование (дешифрация) команды, т. е. определение кода выполняемой операции;

    выполнение команды;

    обращение к памяти;

    запоминание полученных результатов в памяти.

Для реализации каждого из перечисленных этапов (каждой операции) служит отдельное устройство- ступень. Таким образом, в каждом конвейере процессора Pentium имеется пять ступеней.

При конвейерной обработке на выполнение каждого этапа отводится один такт синхронизирующей (тактовой) частоты. В каждом новом такте заканчивается выполнение одной команды и начинается выполнение новой команды. Такое выполнение команд называют поточной обработкой.

Образно ее можно сравнить с производственным конвейером (потоком), где на каждом участке с разными изделиями выполняют всегда одну и ту же операцию. При этом, когда готовое изделие сходит с конвейера, на него заходит новое, а остальные изделия в это время находятся на разных стадиях готовности. Переход изготавливаемых изделий с участка на участок должен происходить синхронно, по специальным сигналам (в процессоре это такты, формируемые тактовым генератором).

Общее время выполнения одной команды в конвейере с пятью ступенями будет составлять пять периодов тактовой частоты. В каждом такте конвейер будет одновременно обрабатывать (выполнять) пять различных команд. В результате за пять тактов будет выполнено пять команд. Таким образом, конвейеризация увеличивает производительность процессора, но она не сокращает время выполнения отдельной команды. Выигрыш получается за счет того, что обрабатывается сразу несколько команд.

В действительности конвейеризация даже увеличивает время выполнения каждой отдельной команды из-за появления дополнительных расходов, связанных с организацией работы конвейера. При этом тактовая частота ограничивается быстродействием работы самой медленной ступени конвейера.

В качестве примера рассмотрим процесс выполнения команды, у которой длительности выполнения этапов составляют 60, 30, 40, 50 и 20 нс. Примем дополнительные расходы на организацию конвейерной обработки равными 5 нс.

Если бы не было конвейеризации, то на выполнение одной команды потребовалось

60 + 30 + 40 + 50 + 20 = 200 нс.

Если же используется конвейерная организация, то длительность такта должна быть равна длительности самого медленного этапа обработки с добавлением «накладных» расходов, т.е. 60 + 5 = 65 нс. Таким образом, полученное в результате конвейеризации сокращение времени выполнения команды составит 200/65»3,1 раза.

Заметим, что время выполнения конвейером одной команды составляет 5 × 65 = 325 нс. Эта величина существенно больше 200 нс - времени выполнения команды без конвейеризации. Но одновременное выполнение сразу пяти команд дает среднее время завершения одной команды 65 нс.

Процессор Pentium имеет две кэш-памяти первого уровня (они расположены внутри процессора). Как известно, кэширование увеличивает производительность процессора за счет уменьшения числа случаев ожидания поступления информации из медленной оперативной памяти. Нужные данные и команды берутся процессором из быстрой кэш-памяти (буфера), куда они заносятся заранее.

Наличие одной кэш-памяти в предыдущих конструкциях процессоров приводило к возникновению структурных конфликтов. Две команды, выполнявшиеся конвейером, порой одновременно пытались считать информацию из единственной кэш-памяти. Выполнение раздельного кэширования (буферизации) для команд и данных исключает такие конфликты, давая возможность обеим командам выполняться одновременно.

Развитие вычислительной техники идет непрерывно. Постоянно конструкторы ищут новые пути совершенствования своих изделий. Наиболее ценным ресурсом процессоров является их производительность. По этой причине изобретаются разнообразные приемы повышения производительности процессоров.

Одним из таких приемов является экономия времени за счет предсказания возможных путей выполнения разветвляющегося алгоритма. Это осуществляется с помощью блока предсказания адреса будущего перехода. Идея его работы похожа на идею работы кэш-памяти.

Как известно, существуют линейные, циклические и разветвляющиеся вычислительные процессы. В линейных алгоритмах команды выполняются в порядке их записи в оперативной памяти: последовательно одна за другой. Для таких алгоритмов введенный в процессор блок предсказания адреса перехода не может дать выигрыша.

В разветвляющихся алгоритмах выбор команды определяется результатами проверки условий ветвлений. Если ждать окончания вычислительного процесса в точке ветвления и затем выбирать из ОЗУ нужную команду, то неизбежно появятся потери времени из-за непроизводительного простоя процессора (считывание команды из ОЗУ идет медленно).

Блок предсказания адреса перехода работает на опережение и пытается заблаговременно предсказать адрес перехода, чтобы заранее перенести нужную команду из медленной оперативной памяти в специальный быстрый буфер перехода BTB (Branch Target Buffer).

Когда буфер ВТВ содержит правильное предсказание, переход происходит без задержки. Это напоминает работу кэш-памяти, у которой также бывают промахи. Из-за промахов операнды приходится считывать не из кэш-памяти, а из медленной ОП. Из-за этого происходит потеря времени.

Реализацию идеи предсказания адреса перехода осуществляют в процессоре два независимых буфера предварительной выборки. Они работают совместно с буфером предсказания переходов, причем один из буферов выбирает команды последовательно, а второй - согласно предсказаниям ВТВ.

Процессор Pentium имеет два пятиступенчатых конвейера для выполнения операций в формате с фиксированной точкой. Кроме того, в процессоре имеется конвейер с восьмью ступенями для вычислений в формате с плавающей точкой. Такие вычисления требуются при выполнении математических расчетов, а также для быстрой обработки динамических трехмерных цветных изображений.

Развитие архитектуры процессоров идет по пути постоянного увеличения объема кэш-памяти первого и второго уровней. Исключением стал процессор Pentium 4, у которого объем кэш-памяти неожиданно снизился по сравнению с Pentium III.

Для повышения производительности в новых конструкциях процессоров создают две системные шины, работающие с разными тактовыми частотами. Быстрая шина используется для работы с кэш-памятью второго уровня, а медленная - для традиционного обмена информацией с другими устройствами, например ОЗУ. Наличие двух шин исключает конфликты при обмене информацией процессора с основной памятью и кэш-памятью второго уровня, находящейся за пределами кристалла процессора.

Следующие за Pentium процессоры содержат большое число ступеней в конвейере. Это уменьшает время выполнения каждой операции в отдельной ступени, а значит, позволяет поднять тактовую частоту процессора.

В процессоре Pentium Pro (P6) применен новый подход к порядку выполнения команд, последовательно расположенных в ОЗУ.

Новый подход заключается в выполнении команд в произвольном порядке по мере их готовности (независимо от порядка расположения в ОЗУ). Однако конечный результат формируется всегда в соответствии с исходным порядком команд в программе. Такой порядок выполнения команд называется динамическим или опережающим.

Рассмотрим в качестве примера следующий фрагмент учебной программы, записанной на некотором (вымышленном) машинно-ориентированном языке.

r1 ¬mem Команда 1

r3 ¬r1 + r2 Команда 2

r5 ¬r5 + 1 Команда 3

r6 ¬r6 – r7 Команда 4

Символами r1…r7 обозначены регистры общего назначения (РОН), которые входят в блок регистров процессора.

Символом memобозначена ячейка памяти ОЗУ.

Прокомментируем записанную программу.

Команда 1: записать в РОН r1 содержимое ячейки памяти ОЗУ, адрес которой указан в РОН r4.

Команда 2: записать в РОН r3 результат сложения содержимого регистров r1 и r2.

Команда 3: прибавить к содержимому регистра r5 единицу.

Команда 4: уменьшить содержимое РОН r6 на содержимое регистра r7.

Предположим, что при выполнении команды 1 (загрузка операнда из памяти в регистр общего назначения r1) оказалось, что содержимое ячейки памяти mem отсутствует в кэш-памяти процессора (произошел промах, нужный операнд не был заранее доставлен в буфер из ОЗУ).

При традиционном подходе процессор перейдет к выполнению команд 2, 3, 4 только после того, как данные из ячейки mem основной памяти поступят в процессор (точнее, в регистр r1). Так как считывание будет происходить из медленно работающей оперативной памяти, этот процесс займет достаточно много времени (по меркам процессора). Все время ожидания этого события процессор будет простаивать, не выполняя полезной работы.

В приведенном примере процессор не может выполнить команду 2 до завершения команды 1, так как команда 2 использует результаты выполнения команды 1. В то же время процессор мог бы заранее выполнить команды 3 и 4, которые не зависят от результата выполнения команд 1 и 2.

В подобных случаях процессор Р6 работает иначе.

Процессор Р6 не ждет окончания выполнения команд 1 и 2, а сразу переходит к внеочередному выполнению команд 3 и 4. Результаты опережающего выполнения команд 3 и 4 сохраняются и извлекаются позднее, после выполнения команд 1 и 2.Таким образом, процессор Р6 выполняет команды в соответствии с их готовностью к выполнению, вне зависимости от их первоначального расположения в программе.

Производительность, безусловно, важный показатель работы ЭВМ. Однако не менее важно, чтобы быстрые вычисления происходили при малом числе ошибок.

В процессоре имеется устройство самотестирования, которое автоматически проверяет работоспособность большинства элементов процессора.

Кроме того, выявление сбоев, произошедших внутри процессора, осуществляется с помощью специального формата данных. К каждому операнду добавляется бит четности, в результате чего все циркулирующие внутри процессора числа становятся четными. Появление нечетного числа сигнализирует о случившемся сбое. Наличие нечетного числа - это как бы появление фальшивой банкноты без водяных знаков.

Единицами измерения быстродействия процессоров (и ЭВМ) могут служить:

    МИПС (MIPS- Mega Instruction Per Second)- миллион команд (инструкций) над числами с фиксированной точкой за секунду;

    МФЛОПС (MFLOPS- Mega Floating Operation Per Second)- миллион операций над числами с плавающей точкой за секунду;

    ГФЛОПС (GFLOPS- Giga Floating Operation Per Second)- миллиард операций над числами с плавающей точкой за секунду.

Имеются сообщения о самом быстром в мире компьютере ASCI White (корпорация IBM), быстродействие которого достигает 12,3 ТФЛОПС (триллиона операций).

Сейчас полно информации в интернете по теме процессоров, можно найти кучу статей о том как он работает, где в основном упоминаются регистры, такты, прерывания и прочее...Но, человеку не знакомому со всеми этими терминами и понятиями достаточно трудно вот так "с лету" вникнуть в понимание процесса, а начинать надо с малого - а именно с элементарного понимания как устроен процессор и из каких основных частей он состоит .

Итак, что же окажется внутри микропроцессора, если его разобрать:

цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).

Под номером 2 - находится сам кристалл, по факту являющийся самой важной и дорогой в изготовлении частью микропроцессора. Именно благодаря этому кристаллу происходят все вычисления (а это и есть самая главная функция процессора) и чем он сложнее, чем совершенней - тем мощнее получается процессор и тем дороже соответственно. Кристалл изготавливается из кремния. На самом деле процесс изготовления очень сложный и содержит в себе десятки шагов, подробнее в этом видео:

Цифра 3 - специальная текстолитовая подложка, к которой крепятся все остальные части процессора, кроме того она играет роль контактной площадки - на ее обратной стороне есть большое количество золотистых "точек" - это контакты (на рисунке их немного видно). Благодаря контактной площадке (подложке) обеспечивается тесное взаимодействие с кристаллом, ибо напрямую хоть как нибудь воздействовать на кристалл не представляется возможным.

Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается "мостик" между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.

Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):

Вообще устройство процессоров разных производителей и даже моделей одного производителя может сильно разниться. Однако принципиальная схема работы остается прежней - у всех есть контактная подложка, кристалл (или несколько, расположенных в одном корпусе) и металлическая крышка для отвода тепла.

Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):

Форма контактов и структура их расположения зависит от процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без "штырьков", поскольку штырьки находятся прямо в сокете материнской платы.

А бывает другая ситуация, где "штырьки" контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:

Как уже упоминалось выше, устройство разных моделей процессоров одного производителя может различаться, перед нами яркий тому пример - четырехъядерный процессор Intel Core 2 Quad, который по сути представляет собой 2 двухъядерных процессора линейки core 2 duo, совмещенных в одном корпусе:

Важно! Количество кристаллов внутри процессора и количество ядер процессора - не одно и то же.

В современных моделях процессоров Intel умещается сразу 2 кристалла (чипа). Второй чип - графическое ядро процессора, по-сути играет роль встроенной в процессор видеокарты, тоесть даже если в системе отсутствует , графическое ядро возьмет на себя роль видеокарты, причем довольно мощной (в некоторых моделях процессоров вычислительная мощь графических ядер позволяет играть в современные игры на средних настройках графики).

Вот и все устройство центрального микропроцессора , вкратце конечно же.